Hydrodynamics of bacterial motion
نویسندگان
چکیده
In this paper we present a hydrodynamic approach to describe the motion of migrating bacteria as a special class of self-propelled systems. Analytical and numerical calculations has been performed to study the behavior of our model in the turbulent-like regime and to show that a phase transition occurs as a function of noise strength. Our results can explain previous experimental observations as well as results of numerical simulations.
منابع مشابه
Simulation and optimization of live fish locomotion in a biomimetic robot fish
This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...
متن کاملComparison between linear and nonlinear models for surge motion of TLP
Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...
متن کاملInvestigating the Effects of Mass Transfer and Mixture Non-Ideality on Multiphase Flow Hydrodynamics Using CFD Methods
A numerical framework has been proposed to model the interacting effects of mixture non-ideality and mass transfer on hydrodynamics of a multiphase system using CFD methods.Mass transfer during condensation and vaporization is modeled by chemical potential at the liquid-vapor interface. Species mass transfers are related to the diffusion at the interface which in turn is related to the conc...
متن کاملAmplified effect of Brownian motion in bacterial near-surface swimming.
Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctua...
متن کاملHydrodynamic damped pitch motion of tension leg platforms
Because of fluctuation in leg tension, pitch motion is very effective fatigue and life safety of leg elements in tension leg structures (TLSs). In this paper an exact solution for pitch vibration of a TLS interacting with ocean wave is presented. The legs of TLP are considered as elastic springs. The flow is assumed to be irrotational and single-valued velocity potentials are defined. The effec...
متن کامل